
Ruby implementation of the openEHR specifications

Shinji Kobayashia, Akimichi Tatsukawab,c
a Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Ehime, Japan

b Narimasu Kosei Hospital, Tokyo, Japan
c Department of Medical Informatics and Economics, Graduate School of Medicine, University of Tokyo, Japan

Abstract

The openEHR project has developed the specification for fu-
ture-proof interoperable electronic health record (EHR) sys-
tems. This project provides the specification and implementa-
tion on which the ISO/CEN 13606 standard is based. The im-
plementation has been formally described in Eiffel, C# and
Java, but not in scripting languages. A team from Japan has
implemented this specification using the Ruby language for
the efficient development of new healthcare computing envi-
ronments and for investigation of the universal applicability of
the openEHR specification.

Keywords:
Electronic health records, openEHR, ISO/CEN 13606, Ruby,
Open-source software.

Methods

The Ruby implementation of openEHR was developed with
Ruby 1.8.6 or later.

More information on the Ruby implementation project and the
source code are available at http://openehr.jp/ref-impl-ruby/.
In addition, these resources are available under the openEHR
open source software license (Mozilla tri-license) like the oth-
er implementations of the openEHR project.

Because our implementation policy involves agile program-
ming, we established the rule that unit tests should be written
before working code.

Results

We implemented most of the openEHR specification and Ar-
chetype Definition Language (ADL) parser. We also imple-
mented RESTful terminology server experimentally.

ADL Parser

An adl_parser is an implementation of ADL parser library in
Ruby programming language. It is built on Racc, a LALR(1)-

type parser generator that is bundled with the Ruby standard
library. Currently, we are investigating a design and imple-
mentation of these facilities to fit with the specifications cor-
rectly.

Reference models (RM)

RM is used to describe health record itself in the openEHR.
We implemented the most of all specification. Some specifica-
tions are not yet implemented in other language implementa-
tion. Because some packages were not determined specifica-
tion in detail, we could not implement such packages that even
the other projects had not implemented yet. For example,
RM::Support::Measurement,
RM::DataTypes::TimeSpecification were not implemented in
Java or Eiffel.

Archetype Object models (AOM)

AOM is a runtime image of archetype in openEHR system.
We also implemented these class packages.

RESTful terminology server

We designed RESTful API as web service. An example query
is shown as bellow URI (1).

http://localhost:3000/terminology/openher/en/1 (1)

This URI means protocol, server address, terminology access,
category, encodings, code for terminology. This request re-
turns simple XML format terminology information.

Conclusion

We implemented most of the openEHR specification using
Ruby and have encountered some complications in doing so.
Because the Ruby language has the capacity to solve such
problems, the Ruby implementation of openEHR may provide
a modern and practical platform for healthcare information
systems.

